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ABSTRACT

In this paper we review the development of the shock-capturing methodology,

paying special attention to the increasing nonlinearity in its design and its relation

to interpolation. It is well-known that high-order approximations to a discontinuous

function generate spurious oscillations near the discontinuity (Gibbs phenomenon).

Unlike standard finite-difference methods which use a fixed stencil, modern shock-

capturing schemes use an adaptive stencil which is selected according to the local

smoothness of the solution. Near discontinuities this technique automatically switches

to one-sided approximations, thus avoiding the use of discontinuous data which brings

about spurious oscillations.
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1 Introduction

In this paper, we describe and analyze numerical techniques that are designed to

approximate weak solutions of hyperbolic systems of conservation laws in several

space dimensions. For sake of exposition, we shall describe these methods as they

apply to the pure initial value problem (IVP) for a one-dimensional scalar conservation

law

u,+/(u)_=0, u(x,0)=uo(z). (i.i)

To further simplify our presentation, we assume that the flux/(u) is a convex function,

i.e., f"(u) > 0 and that the initial data u0(x) are piecewise smooth functions which

are either periodic or of compact support. Under these assumptions, no matter how

smooth uo is, the solution u(x,t) of the IVP (1.1) becomes discontinuous at some

finite time t = t=. In order to extend the solution for t > t=, we introduce the notion

of weak solutions, which satisfy

d/b-gi ,_d:_+ f(,.,(b,t))- f(Ka, t)) =0 (i.2.)

for all b > a and t > 0. ielation (i.2a) implies that u(z, t) satisfies the PDE in (i.1)
wherever it is smooth, and the iankine-Hugoniot jump relation

f(,_(y+ o,t)) - f(_,(y- o,t)) = [,_(y+ o,t) - ,_(y- o,t)]-_ (1.2b)

across curves z = y(t) of discontinuity.

It is well-known that weak solutions are not uniquely determined by their initial

data. To overcome this difficulty, we consider the IVP (1.1) to be the vanishing

viscosity limit e I 0 of the parabolic problem

(,_'),+ f(,_'),,=_,L _,o(x,o)=_,o(_.), (l.3a)

and identify the unique "physically relevant" weak solution of (1.1) by

limut

The limit solution (1.3) can be characterized by an inequality that the values uL =

u(y- O,t),uR = u(y + O,t) and s = dy/dt have to satisfy; this inequality is called an

entropy condition; admissible discontinuities are called shocks. When f(u) is convex,

this inequality is equivalent to Lax's shock condition

(1.4)

where a(u) = f'(u) is the characteristic speed (see [81for more details).
Weturn nowto describefinitedifferenceapproximationsfor the numericalsolution

of the IVP (1.1). Let v_' denote the numerical approximation to u(x_,t,,) where
x_ = jh, t. = nT";let Vh(X, t) be a globally defined numerical approximation associated
with the discrete values {v_'}, oo < j < co, n >_0.



The classical approach to the design of numerical methods for partial differential

equations is to obtain a solvable set of equations for {v_'} by replacing derivatives in

the PDE by appropriate discrete approximations. Therefore, there is a conceptual

difficulty in applying classical methods to compute solutions which may become dis-

continuous. Lax and Wen&off [9] overcame this difculty by considering numerical

approximations to the weak formulation (1.2a) rather than to the PDE (1.1). For this

purpose, they have introduced the notion of schemes in conservation form:

V?+I = -  (Tj+½-7j_ )- :)j;

here A = -r/h and f_+½ denotes

(l.5a)

7,+½= v,"+k); (1.hb)

7(wl,..., w2k) is a numerical flux function which is consistent with the flux f(u), in

the sense that

7(u,,,,...u) =/(,,); (1.5c)

Eh denotes the numerical solution operator. Lax and Wendroff proved that if the

numerical approximation converges boundedly almost everywhere to some function

u, then u is a weak solution of (1.1), i.e., it satisfies the weak formulation (1.2a).

Consequently discontinuities in the limit solution automatically satisfy the Rankine-

Hugoniot relation (1.2b). We refer to this methodology as shock-capturing (a phrase

coined by H. Lomax).

In the following, we list the numerical flux function of various 3-point schemes

(k = l in (1.5b)):

(i) The Lax-Friedrichs scheme [7]

-f(w,,w2) = 2[f(wl) + f(w2) - _(w2 - wl)] (1.6)

(ii) Godunov's scheme [1]

7(w_,w2) f(V(O; w,,w2)); (1.7a)

here V(m/t;w,, w2) denotes the self-similar solution of the IVP (1.1) with the initial

data

?AO(X)
L w_ m>O

(iii) The Cole-Murman scheme [12]:

f(wl, w_) = _[/(Wl) + f(w_) - [_(wl,w2)](_2 - Wl)] (1.8a)

where

{ $(,,,=)-1(_,,)
if wl # w2 (1.8b)
if wl = w2
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(iv) The Lax-Wendroff scheme[9]:

f(wl, w2) = _{f(wl) -Ff(w2) --ha wl --Fw_ [f(w_)--f(wl)]}. (1.9)2

Let E(_) denote the evolution operator of the exact solution of (1.1) and let Eh

denote the numerical solution operator defined by the RHS of (1.5a). We say that the

numerical scheme is r-th order accurate (in a pointwise sense) if its local truncation
error satisfies

E(r).u- Zh.u = 0(h "+1) • (1.10)

for all sufficiently smooth u; here r = 0(h). If r > 0, we say that the scheme is
consistent.

The schemes of Lax-Friedrichs (1.6), Godunov (1.7), and Cole-Murman (1.8) are

first order accurate; the scheme of Lax-Wendroff (1.9) is second order accurate.

We remark that the Lax-Wendroff theorem states that if the scheme is convergent,

then the limit solution satisfies the weak formulation (1.2b); however, it need not be

the entropy solution of the problem (see [4]). It is easy to see that the schemes of

Cole-Murman (1.8) and Lax-Wendroff (1.9) admit a stationary "expansion shock"

(i.e., f(uL) = f(uR) with a(uL) < a(uR)) as a steady solution. This problem can be

easily rectified by adding sufficient numerical dissipation to the scheme (see [11] and

[3]).

2 Interpolatory Schemes and Linear Discontinu-
ities

Let us consider the constant coefficient case f(u) = au, a-" const, in (1.1), i.e.,

+ = 0, 0) = (2.1a)
the solution to which is

In this case the schemes (1.6)- (1.9) take the form

K +

v'_+I = __, Cl(v)v']+l - (Eh" v")j (2.2)
l=-K-

where v = )_a is the CFL number. The coefficients Cl(v) are independent of the

numerical solution v"; this makes Eh a linear operator.

We say that the numerical scheme Eh is (linearly) stable if

[l(Eh)'_l] < C for 0_ n_" < T, r = O(h). (2.3a)

In the constant coefficient case the scheme is stable if and only if it satisfies von
Neumann's condition

K +

[ _ Ct(v)l_[ <1 for all 0<_<_r. (2.3b)
l=-K-
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It is easy to see that all the 3 point schemes (1.6) - (1.9) are stable under the CFL

condition

Iv[--l_al __ I. (2.3c) |

The notion of stability (2.3a) is related to convergence through Lax's equivalence

theorem, which states that a consistent linear scheme is convergent if and only if it

is stable (see [13] for more details).

Let us denote by S I" the stencil of (r + 1) successive points starting with zi

_'i = {xi, xi+l,... ,xi+,},

let P(x; S_, u) denote the unique polynomial of degree r interpolating the (r+ 1) values

of u on this stencil and let Q(x; u) denote the piecewise polynomial interpolation of

= S_(j), xj-1 _ _

We refer to the numerical scheme

v$+1= Q(_j-,,;v")

as interpolatory scheme. Clearly, the interpolatory scheme (2.4) is r-th order accurate.

When Q(x; v") is the piecewise linear interpolation of v" (i.e., r = 1, i(j) = j - 1

in (2.45)) then (2.4c) is the first-order accurate upwind scheme; in the constant

coefficient case this scheme is identical to those of Godunov (1.7) and Cole-Murman

(1.8).
Next let us assume a > 0 and consider the second order case r = 2 in which

Q(x; v") is a piecewise-parabolic interpolation of v '_. There are two different choices of

stencil in (2.4): Taking Q in Ix j_ 1, x_] to be the parabola through S]_1

(i.e., i(j) = j - 1) results in the Lax-Wendroff scheme (1.9); taking Q in [zi_l,xj]

to be the parabola through S]_2 = {xj__,x__l,zj} (i.e., (i(j) = j - 2) results in the

second-order upwind scheme.

We turn now to consider the application of these schemes to the step function

H(z)

{0 j<01 _>o ,H_= 1 j>l_

For the first order upwind scheme we get that

i x<0
Q(x;H)= /h O < :r. < h

h<_

(2.4.)

values

_ion of

(2.4b)

(2.4c)

m ate.

as ;ant

irlna, n

w:aich ieiii :c_ iio:s of

= {X#_I, al#, ali+l }

for the Lax-Wendroff scheme

0

lz x

O(x; H) = 2h(i + X)
1- ½(1- _)(2- _)
1

; (2.55)

; (2.5c)

x<-h

-h<z<O
O<z<h

h<z
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for the secondorder upwind schemewe get that

0 z_<._

_(1+ _) 0 < x < h

Q(z; H) = 11-4- ](_ X) 2h_- 1)(2- • h <
2h

(2.5d)

We observe that Q in (2.5b) is a monotone function of x; consequently the numerical

solution by Godunov's scheme to these data is also monotone. On the other hand

Q for the second order schemes (2.5c) - (2.5d) is not a monotone function. For the

Lax-Wendroff scheme Q is negative in -h < x < 0 and has a minimum of -0.125;

similarly for the second order upwind scheme Q is larger than 1 in h < z < 2h

with a maximum of 1.125. This observation explains the Gibbs-like phenomenon of

generating spurious oscillations in calculating discontinuous data with these second
order schemes.

We say that the scheme Eh is monotonicity preserving if

v monotone =_ Eh. v monotone. (2.5)

Clearly the numerical solution of a monotonicity preserving scheme to initial data of a

step-function is always monotone and therefore the discontinuity propagates without

generating spurious oscillations.

Godunov has shown that the linear scheme (2.2) is monotonicity preserving if and

only if

Cl(v)_>0, -g_ <l<K+; (2.7)

this implies that a monotonicity-preserving scheme which is linear is necessarily only

first-order accurate. It took some time to realize the Godunov's monotonicity the-

orem does not mean that there are no high-order accurate monotonicity preserving

schemes; it only means that there are no such linear ones. Hence high-order accurate

monotonicity-preserving schemes are nonlinear in an essential way.

The second-order accurate schemes mentioned above are linear because the choice

of the stencil (2.4) is fixed. Let us consider now a piecewise-quadratic interpolation

which is made nonlinear by an adaptive selection of the stencil in (2.4b). For the

interval [__1, _j] let us consider the two stencils S]_ 2 = {xj_2, zj_,, x_} and S]_ 1 =

(Zi_l, z j, z j+l }7 and select the one in which the interpolant is smoother. If we measure

the smoothness of u by the second derivative of the corresponding parabola we select

j - 2
i(j) i j-1

d _

if [_-_P(z; __2,u)] < [-_P(x;S]_I,U)[

otherwise
(2.s.)

When we apply this selection of stencil to the step-function H(z) (2.5a) we get that

for [_-1,_0]wechoosethe stencilS___= {___,___,_0)forwhichP(_;S___,H) = 0;for
the interval [zl, x2] we choose the stencil S_ = {x_, z2, x3} for which P(z; S_, H) _ 1.

As is evident from comparing (2.5c) and (2.5d) it does not matter which stencil we



assignto [x0,xl] sinceboth parabolae are monotone there;with (2.8a)we select S 2-1

for [x0,xl].Thus we get in (2.4)

0 x_<0
Q(x;H)= 1=(1+_) 0<x<h (2.86)_K - -

1 h_<x

which is a monotone function of x although it is actually a plecewise-quadratic poly-

nomial.

The use of an adaptive stencil is the main idea behind the Essentially Non-

Oscillatory (ENO) schemes to be described later in this paper.

order of accuracy in a straightforward manner: For r-th order accuracy we consider

for [zi_l,zj] the r stencils S" S r S;__. We choose i(j) in (2.4b) to be thej--r, i-r+l,'" ",

one which minimizes

3

An immense body of work has been done to find out whether stability of constant

coefficient scheme with respect to all "frozen coefficients" associated with the problem,

implies convergence in the variable coefficient case and in the nonlinear case.

In the variable coefficient case, where the numerical solution operator is linear

and Lax's equivalence theorem holds, it comes out that the stability of the variable

coefficient scheme depends strongly on the dissipativity of the constant coefficient

one, i.e., on the particular way it damps the high-frequency components in the Fourier

representation of the numerical solution.

In the nonlinear case, under assumptions of sufficient smoothness of the PDE, its

solution and the functional definition of the numericai scheme, Strang proved that

linear stability of the first variation of the scheme implies its convergence; we refer

the reader to [13] for more details.
In the case of discontinuous solutions of nonlinear problems, linearly stable schemes

are not necessarily convergent; when such a scheme fails to converge, we refer to this

case as "nonlinear instability." The occurrence of a nonlinear instability is usually

associated with insufficient numerical dissipation which triggers exponential growth

of the h{gh-frequency components of the numerical solution.

The following theorem states that a stronger sense of stability, namely uniform

boundedness of the total variation of the numerical solution, does imply convergence

to a weak solution.

Theorem 3.1. Let Vh be a numerical solution of a conservative scheme (1.5).

(i) If

TV(vh(.,t)) < C. TV(uo) (3.1)

where TV( ) denotes the total variation in x and C is a constant independent of h

for 0 < t < T, then any refinement sequence h _ 0 with T = 0(h) has a convergent

subsequence h i --+ 0 that converges in --lr)°¢to a weak solution of (1.1).

i

It extends to high

:u acy we ,:or sider

in (2.4b) t(, b_ the

Id- P(x; ,u)l fori=j-r,...,j- 1. (2.9)

Total Variation Stability and TVD Schemes
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(ii) If vh is consistent with an entropy inequality which implies uniqueness of the

IVP (1.1), then the scheme is convergent (i.e., all subsequences have the same limit,

which is the unique entropy solution of the IVP (1.1)).

We say that the scheme Eh is Total Variation Diminishing (TVD) if

TV(Eh . v) <_ TV(v) (3.2)

where

TV(w) : _ Iwj+l - wj[. (3.3)
i

Clearly TVD schemes satisfy (3.1) with C = 1 and therefore are TV stable.

In [2] we have shown that if the scheme can be written in the form

v']+1 = v'] + C+. , A:., v" - C-: 1A, ,v" (3.4a)

where Cj_+½ satisfy for all j

c_+_> 0, _++_+ _-+_ ___1 (3.4b)

then the scheme is TVD; here Ai+__v '_ = v_+1 -- v_.
2

general scheme

_+_ = _ - _(7,+½- 75-½)

- 1 -_A. iv
fj+½ = _(fj + fj+l- qi+_ ,+_ ")

we get that if Aq satisfies

_l_+½l _ ),qj+½ _ 1

Applying this lemma to the

(3.5a)

(3.5b)

(3.6a)

then the scheme (3.5) is TVD; here

fJ+_- fi (3.6b)1

ai+½- Aj+½v

This shows that the Cole-Murman scheme (1.8) for which q = I_lis TVD subject to

the CFL restriction ),[_j+½[ < 1.

Using conditions (3.4b) it is possible to construct TVD schemes which are second-

order accurate in the Ll-sense (see [2] and [14]). However, TVD schemes are at

most second-order accurate (see [5]). In order to design higher-order accurate shock

capturing schemes we introduce the notion of Essentially Non-Oscillatory (ENO)

schemes.

4 ENO Schemes

In this section we describe high-order accurate Godunov-type schemes which are a

generalization of Godunov's scheme (1.7) and van Leer's MUSCL scheme [10].



We start with some notations: Let {Ij} be a partition of the real line; let A(I)

denote the interval-averaging (or "cell-averaging") operator

1
 (y)dy; (4.1)

let Wj = A(Ij).w and denote w = '{wj}. We denote the approximate reconstruction

of w(x) from its given cell-averages {_} by R(x;_). To be precise, R(x;_) is a

piecewise-polynomial function of degree (r - 1), which satisfies

(i) n(x;_) = w(x) + O(h _) wherever w is smooth (4.2a)

(ii) A(Ii). n(.;_) = _i (conservation).

Finally, we define Godunov-type schemes by

(4.2b)

v'] +1 = A(Ii). E('r). R(.;v '_) -- (-Eh.v_')j (4.3a)

o= A(ii)uo; (4.3b)vj

here E(t) is the evolution operator of (1.1).

In the scalar case, both the cell-averaging operator A(Ii) and the solution operator

E(_-) are order-preserving, and consequently also total-variation diminishing (TVD);
hence

TV(-Eh . w) <_ TV(R(.;_)). (4.4)

This shows that the total variation of the numerical solution of Godunov-type

schemes is dominated by that of the reconstruction step.

We turn now to describe the recently developed essentially non-oscillatory (ENO)

schemes of [5, 6], which can be made accurate to any finite order r. These are

Godunov-type schemes (4.3) in which the reconstruction R(x;_), in addition to re-

lations (4.2), also satisfies

TV(R(.;_)) <_ TV(_)q-O(hl+n), p > 0 (4.5)

for any piecewise-smooth function w(x). Such a reconstruction is essentially non-

oscillatory in the sense that it may not have a Gibbs-like phenomenon at jump-

discontinuities of w(x), which involves the generation of 0(1) spurious oscillations

(that are proportional to the size of the jump); it can, however, have small spurious

oscillations which are produced in the smooth part of w(x), and are usually of the

size O(h _) of thereconstruction error (4.2a).
When we use an essentially non-oscillatory reconstruction in a Godunov-type

scheme, it follows form (4.4) and (4.5) that the resulting scheme (4.3) is likewise

essentially non-oscillatory (ENO) in the sense that for all piecewise-smooth function

TV(-Eh. _) <_ TV(_) + O(h_+P), p > 0; (4.6)

i.e., it is "almost TVD." Property (4.6) makes it reasonable to believe that the total

variation of the numerical solution is uniformly bounded. We recall that by Theorem



3.1, this would imply that the scheme is convergent (at least in the sense of having

convergent subsequences). This hope is supported by a very large number of numerical

experiments.

Next we describe one of the techniques to obtain an ENO reconstruction. To

simpllfy our presentation we assume that {lj} is a uniform partition

lj = (_j-1,_j), _ = jh.

Given cell averages {_j} of piecewise-smooth function w(x), we observe that

h_ ffJ= _(y)du= W(_j)- W(_j_l)
j-1

(4.7a)

where

fw(_) = ,_(y)dy (4.7b)
0

is the primitive function of w(x). Hence we can easily compute the point values

{W(xA) by summation
i

w(_,) = h _ _. (4._)

Once we have computed the point values of the primitive function we use the ENO in-

terpolation technique (2.4), (2.9) to obtain O(x;W), an r-th order piecewise-
polynomial interpolation of W, i.e.,

Q(x; w) = P(x; s_(i), w) for xj_l _< x < xj (4.8a)

where P(x; S_', W) is the unique r-th degree polynomial which interpolates W over

the stencil S_" = {xl, xi+l,..., xi+r}, and i(j) is chosen so that

j-r<_i<_j-1
(4.8b)

We define R(x; _) by

R(z;_) = d Qx,
("W). (4.9)

We observe that if w(x) is smooth in (xi__ , xj) then for h sufficiently small the

algorithm (4.85) will select a stencil S_'(i) in which w(x) is smooth. It follows then
from standard interpolation theorems that

AwR(_;_) = P(.; _(j),W)l = d. + O(h')= _(*) + O(_') (4.10)

which is property (4.2a). Furthermore (4.10) holds in every interval except for those

in which w(x) has a discontinuity. As we have seen in the examples (2.5) and (2.85)

the Gibbs-phenomenon is associated with intervals near the discontinuity and not

with the interval that contains the discontinuity. This is why the reconstruction (4.8)

- (4.9) satisfies the ENO property (4.5); in [2] we show that the second-order accurate

9



ENO schemeis actually TVD. The conservation property (4.2b) follows directly from

the definition (4.9):

A(Ij)R(.;_) 1 _J dQ(x;W)dx= -£f.__, = _[Q(x_;w) - Q(x_-l;w)]
(4.11)

= -_[w(_)- w(.__l)]=vs. iThe abstractscheme(4.3)canbe writtenin the standardconservationform(1.5).
To do so let us denote by _5(x, _) the solution in the small of the IVP

(4.12)

!b)we

v_ +1 '_ ^ --L-½] (4.13a)= vj -- )_[fj+½

{ (_5)t+ f(_)_.= 0_(_,0) = R(_;v") ' 0 < _<

and integrate this PDE over Ij × [0, r]; using the divergence theorem and (4.2b) we

get that v _+x in (4.3) can be expressed by

where

In the first-order case the scheme (4.13) is identical to Godunov's scheme and the

numerical flux (4.13b) can be expressed in a closed form by (1.7b). For higher order

schemes we use a numerical flux which is an appropriate approximation to (4.13b)

(see [6] for more details).
We remark that the ENO schemes are related to the interpolatory schemes of Sect.

2 as follows: In the constant coefficient case a fixed choice of stencil (i.e., i(j) -j

= constant in (4.8a)) results in the interpolatory scheme (2.4) corresponding to the

same choice of stencil.

fj+½^ = _1 f(_(xj, t))dt (4.13b) E
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